HOUSING MARKET CYCLES, PRODUCTIVITY GROWTH, AND HOUSEHOLD DEBT

Dmitry Brizhatyuk

June 3, 2021
Slow recoveries from financial crises

Recoveries from financial crises tend to be slow and incomplete
(e.g. Cerra and Saxena 2008; Reinhart and Rogoff 2009; Romer and Romer 2017)

A growing literature on hysteresis
(e.g. Benigno and Fornaro 2018; Comin and Gertler 2006; Queralto 2019)
Slow recoveries from financial crises

Big question: under what conditions hysteresis effects are most prominent?

Focus of this paper: the role of housing market and household debt cycles

Empirical evidence and a dynamic general equilibrium model
Intuition

Negative house price shock → household deleveraging

- AD-driven contraction in the short-run
- Endogenous fall in growth and a persistently lower TFP level in the long run
- Amplification through a feedback loop b/w deleveraging, house price, and growth
- Sensitivity to the initial level of household debt
- Asymmetry (positive vs negative house price shocks)
Empirical evidence

Housing market boom-and-bust cycles predict lower future productivity growth

(A) Unbalanced panel of 50 countries, 1950 - 2018:
- House price indexes
- Household debt
- Real economy indicators
- Utilization-adjusted TFP (constructed using the Imbs (1999) correction)

Two experiments:
- House price shock in a panel VAR
- Event study of housing market crashes by local projections

(B) Cross-section of US MSAs since the Great Recession
House price shock in a panel VAR

Panel VAR in levels, Cholesky identification, house price ordered last:

A rise in house prices and household debt predicts lower TFP growth in the medium run.
Event study of housing market crashes

63 housing market boom-and-bust events

Elasticities of macroeconomic variables to the house price decline during the crash:

$$\Delta_h y_{i,t+h} = \alpha^h_i + \alpha^h_t + \beta^h \Delta p^\text{crash}_{i,t} + X'_{i,t} \Gamma^h + \epsilon^h_{it}$$

$$\Delta_h y_{i,t+h} = \log(Y_{i,t+h}) - \log(Y_{i,t}), \quad \text{country } i$$

$$\Delta p^\text{crash}_{i,t}$$ – housing crash measure (3-year price decline from the peak)

$$\alpha^h_i, \alpha^h_t$$ – country and year fixed effects

$$X_{i,t}$$ – vector of controls

H-period response: \(\{\beta^h\}_{h=1:H}\)
Event study of housing market crashes

Deleveraging → persistent decrease in TFP and capital driving persistence
General equilibrium model

- Borrower-saver NK model
- Housing as collateral (Iacoviello 2005)
- Borrowing subject to an occasionally binding constraint
- Endogenous growth through product creation (Romer 1990)
- **Experiment:** a housing market crash triggered by negative housing demand shocks (Liu et al. 2013)
Endogenous growth through innovation

Aggregate production function:

\[Y_t = F\left(K_t, L_t, \int_0^{N_t} x_t(\omega) d\omega \right) \]

New “ideas” through innovation (S):

\[\dot{N}_t = \phi_t S_t^\rho \]

Positive externality in innovation:

\[\phi_t = \phi N_t \quad \text{(generates growth)} \]

Monopolistic competition:

\[x_t(\omega) \text{ are imperfectly substitutable} \rightarrow \text{positive profit} \rightarrow \text{entry subject to a sunk cost} \]

Connection to business cycles:

Entry incentives depend on cyclical conditions
Housing as collateral

$$
\max_{t} \mathbb{E}_{t} \sum_{j=t}^{\infty} \beta^{j-t} [u(C_j, L_j) + \eta_j g(h_j^B)] \\
\text{Utility from housing}
$$

Budget constraint:
$$C_t + P_t^h (h_t - h_{t-1}) + (1 + r_{t-1}) \frac{B_{t-1}}{P_t} = \frac{B_t}{P_t} + \text{other terms}$$

Occasionally binding collateral constraint:
$$B_t \leq \frac{m P_t^h h_t}{h_{t-1}}$$

$$\mathbb{E}_{t} \left(\beta \frac{u'_{ct+1}}{u'_c} \frac{1+r_t}{\Pi_{t+1}} \right) = \frac{1 - \chi_t}{1} \equiv \text{Lagrange multiplier w.r.t. the collateral constraint}$$

The rest of the model includes standard quantitative NK features: nominal rigidities, capital accumulation subject to adjustment costs, varying capital utilization, etc.
IRF matching

Crisis experiment: a sequence of negative housing preference shocks to mimic the empirical housing price decline

The resulting theoretical IRFs are used to estimate a set of quantitative parameters P

IRF matching estimator: choose P to minimize the weighted distance between empirical (Σ^{LP}) and theoretical (Σ^{DSGE}) impulse responses:

$$\min_P \left(\Sigma^{DSGE}(P) - \Sigma^{LP} \right) \Omega^{-1} \left(\Sigma^{DSGE}(P) - \Sigma^{LP} \right)'$$

Quantitative parameters: Capital adjustment costs (ψ_K); R&D adjustment costs (ψ_N); Borrowing limit inertia (ρ_b); Labor disutility inertia (γ), Capital utilization parameter (c_2)
Housing market crash: model vs evidence

% deviation

95% CI

Util.-adjusted TFP

House price

Housing pref. shock

More IRFs
Model-based decomposition of output and TFP dynamics

Growth accounting decomposition

\[\Delta GDP_t = \Delta TFP_t + \alpha \Delta K_t + (1 - \alpha) \Delta L_t \]

- **Labor**
- **Capital**
- **TFP**
- **Total GDP response**

Measured TFP decomposition

\[\Delta TFP_t = \Delta \Omega_t + \alpha \Delta u_t + (1 - \alpha) \Delta N_t \]

- **Innovation effect**
- **Markup effect**
- **Utilization effect**
- **Total TFP response**
Asymmetric belief-driven boom and bust cycle

- Housing cycles driven by beliefs about future demand (Kaplan, Mitman, Violante 2020)
- Asymmetry is driven by occasionally binding collateral constants that amplify negative but not positive shocks

- **Example:** unrealized positive housing demand news shock about t=12:

![Graphs showing TFP, household debt to GDP, house price, and GDP over time](image-url)
Housing market crash: main channels

(1) **AD channel**
Demand effects of deleveraging

(2) **Productivity growth channel**
Endogenous slowdown in TFP growth prolonging the crisis

(3) **Fisherman debt deflation channel**
Negative feedback loop between deleveraging and the collateral price

(4) **Expected income growth channel**
Negative feedback loop between expected growth and consumption
Monetary policy and the welfare cost of the crisis

- Counterfactual simulations under various parameters of the Taylor rule
- Welfare cost in % of the steady-state consumption
Conclusion

Housing market crashes are transitory events but they can leave long-lasting scars on economic activity...

- ...especially in the economy with a high household debt burden
- ...especially when monetary policy focuses on inflation stabilization relative to output stabilization and/or is constrained by the zero lower bound
- occasionally binding collateral constants make these effects asymmetric: housing market booms do not induce comparable increases in productivity growth
APPENDIX
Utilization-adjusted TFP

Utilization adjustment approach of Imbs (1999) based on a partial-equilibrium version of a model from Burnside and Eichenbaum (1996)

Firms problem:

$$\max_{K_t,u_t,e_t} \left[Z_t(u_t K_t)^{\alpha} (e_t L_t)^{1-\alpha} - w(e_t) L_t - (r_t + \delta u_t^\phi) K_t \right]$$

Households problem:

$$\max_{\{C_{t+j}, L_{t+j}, e_{t+j}\}} \sum_{j=0}^{\infty} \beta^j \left(\ln(C_t) - \frac{L_t^{1+\epsilon}}{1+\epsilon} - \frac{e_t^{1+\psi}}{1+\psi} \right)$$

s.t. $C_t \leq w(e_t) L_t$

Capital utilization: $u_t = \left(\frac{Y_t/K_t}{Y/K} \right)^{\frac{\delta}{r+\delta}}$

Labor effort: $e_t = \left(\frac{Y_t/C_t}{Y/C} \right)^{\frac{1}{1+\psi}}$
US factor utilization

Basu, Fernald, and Kimball
Author’s calculations

Back
Event study: sample of housing market crashes

<table>
<thead>
<tr>
<th>Peak</th>
<th>Trough</th>
<th>3 years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEL</td>
<td>1979</td>
<td>1985</td>
<td>-26%</td>
</tr>
<tr>
<td>BGR</td>
<td>1996</td>
<td>2002</td>
<td>-40%</td>
</tr>
<tr>
<td>BGR</td>
<td>2008</td>
<td>2013</td>
<td>-39%</td>
</tr>
<tr>
<td>BRA</td>
<td>2014</td>
<td>2017</td>
<td>-16%</td>
</tr>
<tr>
<td>CAN</td>
<td>1981</td>
<td>1985</td>
<td>-26%</td>
</tr>
<tr>
<td>CHE</td>
<td>1973</td>
<td>1976</td>
<td>-20%</td>
</tr>
<tr>
<td>CHE</td>
<td>1990</td>
<td>2000</td>
<td>-20%</td>
</tr>
<tr>
<td>CHE</td>
<td>1959</td>
<td>1961</td>
<td>-12%</td>
</tr>
<tr>
<td>COL</td>
<td>1989</td>
<td>1992</td>
<td>-13%</td>
</tr>
<tr>
<td>COL</td>
<td>1995</td>
<td>2003</td>
<td>-14%</td>
</tr>
<tr>
<td>CZE</td>
<td>2008</td>
<td>2013</td>
<td>-15%</td>
</tr>
<tr>
<td>DEU</td>
<td>1981</td>
<td>1987</td>
<td>-11%</td>
</tr>
<tr>
<td>DKN</td>
<td>1979</td>
<td>1982</td>
<td>-34%</td>
</tr>
<tr>
<td>DKN</td>
<td>1986</td>
<td>1993</td>
<td>-18%</td>
</tr>
<tr>
<td>DNK</td>
<td>2007</td>
<td>2012</td>
<td>-19%</td>
</tr>
<tr>
<td>ESP</td>
<td>1991</td>
<td>1996</td>
<td>-13%</td>
</tr>
<tr>
<td>ESP</td>
<td>2007</td>
<td>2014</td>
<td>-15%</td>
</tr>
<tr>
<td>EST</td>
<td>2007</td>
<td>2009</td>
<td>-51%</td>
</tr>
<tr>
<td>FIN</td>
<td>1974</td>
<td>1979</td>
<td>-25%</td>
</tr>
<tr>
<td>FIN</td>
<td>1989</td>
<td>1993</td>
<td>-42%</td>
</tr>
<tr>
<td>FRA</td>
<td>1980</td>
<td>1985</td>
<td>-11%</td>
</tr>
<tr>
<td>GBR</td>
<td>1973</td>
<td>1977</td>
<td>-24%</td>
</tr>
<tr>
<td>GBR</td>
<td>1989</td>
<td>1996</td>
<td>-22%</td>
</tr>
<tr>
<td>GBR</td>
<td>2007</td>
<td>2012</td>
<td>-16%</td>
</tr>
<tr>
<td>GRC</td>
<td>2007</td>
<td>2017</td>
<td>-15%</td>
</tr>
<tr>
<td>HKG</td>
<td>1981</td>
<td>1984</td>
<td>-47%</td>
</tr>
<tr>
<td>HKG</td>
<td>1997</td>
<td>2003</td>
<td>-42%</td>
</tr>
<tr>
<td>HRV</td>
<td>1999</td>
<td>2002</td>
<td>-14%</td>
</tr>
<tr>
<td>HRV</td>
<td>2009</td>
<td>2015</td>
<td>-19%</td>
</tr>
<tr>
<td>HUN</td>
<td>2006</td>
<td>2013</td>
<td>-17%</td>
</tr>
<tr>
<td>IRL</td>
<td>2006</td>
<td>2012</td>
<td>-30%</td>
</tr>
<tr>
<td>ISL</td>
<td>2007</td>
<td>2010</td>
<td>-32%</td>
</tr>
<tr>
<td>ITA</td>
<td>1981</td>
<td>1986</td>
<td>-21%</td>
</tr>
<tr>
<td>ITA</td>
<td>1992</td>
<td>1997</td>
<td>-14%</td>
</tr>
<tr>
<td>JPN</td>
<td>1974</td>
<td>1977</td>
<td>-23%</td>
</tr>
<tr>
<td>JPN</td>
<td>1991</td>
<td>2012</td>
<td>-13%</td>
</tr>
<tr>
<td>KOR</td>
<td>1991</td>
<td>1998</td>
<td>-25%</td>
</tr>
<tr>
<td>LTU</td>
<td>2007</td>
<td>2010</td>
<td>-43%</td>
</tr>
<tr>
<td>LUX</td>
<td>1980</td>
<td>1984</td>
<td>-22%</td>
</tr>
<tr>
<td>LVA</td>
<td>2007</td>
<td>2010</td>
<td>-47%</td>
</tr>
<tr>
<td>MYS</td>
<td>1997</td>
<td>1999</td>
<td>-15%</td>
</tr>
<tr>
<td>NLD</td>
<td>1964</td>
<td>1966</td>
<td>-27%</td>
</tr>
<tr>
<td>NZL</td>
<td>1974</td>
<td>1980</td>
<td>-18%</td>
</tr>
<tr>
<td>NLD</td>
<td>1987</td>
<td>1992</td>
<td>-29%</td>
</tr>
<tr>
<td>NLD</td>
<td>2007</td>
<td>2009</td>
<td>-11%</td>
</tr>
<tr>
<td>PER</td>
<td>1999</td>
<td>2003</td>
<td>-15%</td>
</tr>
<tr>
<td>PHL</td>
<td>1996</td>
<td>2004</td>
<td>-36%</td>
</tr>
<tr>
<td>POL</td>
<td>2010</td>
<td>2013</td>
<td>-16%</td>
</tr>
<tr>
<td>PRT</td>
<td>1992</td>
<td>1996</td>
<td>-11%</td>
</tr>
<tr>
<td>RUS</td>
<td>2008</td>
<td>2011</td>
<td>-33%</td>
</tr>
<tr>
<td>SGP</td>
<td>1983</td>
<td>1986</td>
<td>-31%</td>
</tr>
<tr>
<td>SGP</td>
<td>1996</td>
<td>1998</td>
<td>-32%</td>
</tr>
<tr>
<td>SRB</td>
<td>2010</td>
<td>2013</td>
<td>-29%</td>
</tr>
<tr>
<td>SVK</td>
<td>2011</td>
<td>2014</td>
<td>-21%</td>
</tr>
<tr>
<td>SVK</td>
<td>2011</td>
<td>2014</td>
<td>-21%</td>
</tr>
<tr>
<td>SVK</td>
<td>2008</td>
<td>2012</td>
<td>-21%</td>
</tr>
<tr>
<td>SVK</td>
<td>1997</td>
<td>1998</td>
<td>-26%</td>
</tr>
<tr>
<td>SWE</td>
<td>1990</td>
<td>1993</td>
<td>-30%</td>
</tr>
<tr>
<td>SWE</td>
<td>1990</td>
<td>1993</td>
<td>-30%</td>
</tr>
<tr>
<td>SGP</td>
<td>2006</td>
<td>2009</td>
<td>-30%</td>
</tr>
<tr>
<td>USA</td>
<td>2006</td>
<td>2012</td>
<td>-14%</td>
</tr>
<tr>
<td>ZAF</td>
<td>1984</td>
<td>1987</td>
<td>-39%</td>
</tr>
<tr>
<td>ZAF</td>
<td>2007</td>
<td>2012</td>
<td>-16%</td>
</tr>
</tbody>
</table>

- 63 events in total, 39 before 2006,
- Median duration: 5 years peak to though, -30.6% price decline
Local projections, control variables

Value at the peak and one lag:
- Growth rate of the response variable
- Real per-capita investment growth
- GDP-deflator inflation rate
- Real house price growth rate
- Net exports to GDP

Value at the peak:
- Investment to GDP
- Exchange rate regime indicator (Ilzetzki et al. 2019)
- Systematic banking & currency crises indicator (Laeven and Valencia 2012)
Event study of housing market crashes, pre-2007 sample

Baseline results are not driven by the GFC
Housing market crash and productivity growth across US MSAs

Higher exposure to the crash, slower post-crisis labor productivity growth
Housing market crash and productivity growth across US MSAs

\[\Delta_{2007}^{2017} \log \left(\frac{Y}{L} \right)_i = \alpha + \eta \Delta_{2007}^{2010} \log P_i^H + X_i' \Gamma + \epsilon_i \]

Higher exposure to the crash, slower labor productivity growth

Can explain >40% of the US GDP gap relative to the pre-GFC trend

Identification

IV 1: housing supply elasticity
IV 2: regional sensitivity
Housing market boom and productivity growth across US MSAs

No relation between the house price growth and productivity growth during the boom
Production sector, full problem

Production function: \(F_t = Z_t \left(\tilde{K}_t^\alpha L_t^{1-\alpha} \right)^{1-\xi} \left(\int_0^{N_t} x_t(\omega)^{\frac{1}{\nu}} d\omega \right)^{\nu \xi} \)

\[
\max_{(x_{t+j}(\omega), L_{t+j}, K_{t+j})_{j=0}^\infty} \mathbb{E}_t \sum_{j=0}^\infty \Lambda_{t+t+j}^B \left[p_t^F F_{t+j} - R_{t+j}^K \tilde{K}_{t+j} - W_{t+j} L_{t+j} - \int_0^{N_t} p_{t+j}^x(\omega)x_{t+j}(\omega)d\omega \right]
\]

Labor demand: \(W_t = p_t^F (1 - \alpha) (1 - \xi) \frac{F_t}{L_t} \)

Capital demand: \(R_{t}^K = p_t^F \alpha (1 - \xi) \frac{F_t}{\tilde{K}_t} \)

Intermediate-good demand: \(p_t^x(\omega) = p_t^F \xi \frac{F_t}{X_t} x_t(\omega)^{\frac{1}{\nu}} \)
Intermediate sector, full problem

\[
\max_{p_t^x(\omega)} \left[(p_t^x(\omega) - A^{-1})x_t(\omega) \right] \quad \text{s.t.} \quad p_t^x(\omega) = p_t^F \frac{F_t}{X_t} x_t(\omega)^{\frac{1-\nu}{\nu}}
\]

Optimal relative price: \(p_t^x = \nu A^{-1} \)

Optimal quantity: \(x_t = \left(\frac{A\xi}{\nu} \right)^{\frac{1}{1-\xi}} (p_t^F Z_t)^{\frac{1}{1-\xi}} N_t^{\frac{\nu-1}{1-\xi}} \tilde{K}_t^{\alpha} L_t^{1-\alpha} \)

Real profit: \(d_t = \frac{\nu - 1}{\nu} p_t^x x_t = \frac{\nu - 1}{A} x_t \)
Innovators, full problem

Individual production function: \(N^i_{et} = \phi^i_t S^i_t \)
Aggregate productivity: \(\phi_t = \phi \frac{N_t}{N^\rho_t S^{1-\rho}_t} \)

\[
\max_{\{S^i_{t+j}\}_{j=0}^\infty} \mathbb{E}_t \sum_{j=0}^\infty \Lambda^B_{t,t+j} \left(p^i_{t+j} \phi^i_{t+j} S^i_{t+j} - (1 + AC_{S,t+j}) S^i_{t+j} \right)
\]

Optimal blueprint price: \(p^{i,b}_{t} = \frac{1}{\phi^i_t} \left(1 + AC_{S,t} + AC'_{S,t} S^i_t - \mathbb{E}_t \left(\Lambda^B_{t,t+1} AC'_{S,t+1} S^i_{t+1} \right) \right) \)
Downstream sectors: retailers and wholesalers, full problem

$$\max_{\{P(j)_{t+k}\}_{k=0}^{\infty}} \mathbb{E}_t \sum_{k=0}^{\infty} \Lambda_{t,t+k} \left[\frac{P_{t+k}(j)}{P_t} Y_{t+k}(j) - \frac{P^F_{t+k}}{P_t} F_{t+k}(j) - AC_{p,k}(j) - \Gamma \right]$$,

s.t

Production function: \quad Y_t(j) = F_t(j)

Retailers demand: \quad Y_t(j) = \left(\frac{P_t(j)}{P_t} \right)^{-\eta} Y_t

Price adjustment cost: \quad AC_{p,t}(j) = \frac{\psi_p}{2} \left(\frac{P_t(j)}{P_{t-1}(j)\Pi} - 1 \right)^2 Y_t

$$P_t(j) = \mu_t P^F_t$$

$$\mu_t = \frac{\eta}{(\eta - 1) + \psi_p \frac{\Pi_t}{\Pi} \left(\frac{\Pi_t}{\Pi} - 1 \right) - \psi_p \mathbb{E}_t \Lambda_{t,t+1} \left(\frac{\Pi_{t+1}}{\Pi} - 1 \right) \frac{\Pi_{t+1}}{\Pi} Y_{t+1}}$$
Households: savers

\[
\max_{\{C^S_j, L^S_j, h^S_j, B^S_{j+1}\}_{j=t}^{\infty}} \mathbb{E}_t \sum_{j=t}^{\infty} \beta^j \left(u(C^S_j, L^S_j) + g(h^S_j) \right) \quad \text{s. t.}
\]

Budget constraint: \[C^S_t + P^h_t \Delta h^S_t + (1 + r_{t-1}) \frac{B^S_t}{P_t} = W_t L^S_t + \frac{B^S_{t+1}}{P_t} \]
Households: borrowers

$$\max_{\{C_j^B, L_j^B, h_j^B, B^B_{j+1}, I_j, K_{j+1}, u_{j+1}, u_j\}_{j=t}^\infty} \mathbb{E}_t \sum_{j=t}^\infty \beta_B^{j-t} \left(u(C_j^B, L_j^B) + g(h_j^B) \right) \quad \text{s. t.}$$

Budget constraint:

$$C_t^B + I_t + P_t^h \Delta h_t^B + (1 + r_{t-1}) \frac{B^B_t}{P_t} + \iota_{t+1} v_t (N_t + N_{et}) =$$

$$= \iota_t (v_t + d_t) N_t + W_t L_t^B + R_t^K K_t + \frac{B^B_{t+1}}{P_t}$$

Capital accumulation:

$$K_{t+1} = (I_t - AC_{I,t}) + (1 - \delta_K(u_t)) K_t$$

Collateral constraint:

$$B_t^B \leq \rho_B \frac{B^B_{t-1}}{\Pi_t} + (1 - \rho_B) m P_t^h h_t^B$$

Capital utilization:

$$\delta_K(u_t) = \delta_K + c_1 (u_t - 1) + (c_2/2)(u_t - 1)^2$$
Calibration summary

<table>
<thead>
<tr>
<th>Calibrated parameters</th>
<th>Value</th>
<th>Source / target</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_S)</td>
<td>0.9968</td>
<td>Savers discount factor</td>
</tr>
<tr>
<td>(\beta_B)</td>
<td>0.9918</td>
<td>Borrowers discount factor</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>2</td>
<td>Relative risk aversion</td>
</tr>
<tr>
<td>(1/\varepsilon_L)</td>
<td>1</td>
<td>Elasticity of labor supply</td>
</tr>
<tr>
<td>(\nu/(\nu - 1))</td>
<td>1.6</td>
<td>Intermediate-good elasticity of subst.</td>
</tr>
<tr>
<td>(\eta)</td>
<td>11</td>
<td>Retail-good elasticity of subst.</td>
</tr>
<tr>
<td>(1/A)</td>
<td>1</td>
<td>Intermediate sector marginal cost</td>
</tr>
<tr>
<td>(\delta_N)</td>
<td>0.025</td>
<td>Intermediate sector exit rate</td>
</tr>
<tr>
<td>(\phi_y : \phi_\pi : \rho_r)</td>
<td>0.5/4; 1.5; 0.7</td>
<td>Taylor rule: output; inflation: inertia</td>
</tr>
<tr>
<td>(Z)</td>
<td>1.74</td>
<td>Final sector productivity</td>
</tr>
<tr>
<td>(\psi_p)</td>
<td>120</td>
<td>Price adjustment cost</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.03</td>
<td>Share of housing in utility</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.5</td>
<td>Intermediate good share</td>
</tr>
<tr>
<td>(-1/\varepsilon_h)</td>
<td>-0.2</td>
<td>Elasticity of housing demand</td>
</tr>
<tr>
<td>(m)</td>
<td>0.75</td>
<td>Max leverage</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.4</td>
<td>Capital share</td>
</tr>
<tr>
<td>(\delta_K)</td>
<td>0.025</td>
<td>Steady state capital depreciation</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.11</td>
<td>R&D productivity</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.03</td>
<td>Share of housing in utility</td>
</tr>
<tr>
<td>(\xi)</td>
<td>0.5</td>
<td>Intermediate good share</td>
</tr>
</tbody>
</table>

Sources

- \(\beta_B = \beta_S - 0.005 \)
- \(\beta_B = \beta_S - 0.005 \)
- BGP requirement \(\xi(\nu - 1)/(1 - \xi) = 1 - \alpha \)
- Conventional
- Comin and Gerlter (2006)
- Conventional
- Normalization
- Comin and Gerlter (2006)
- Conventional
- Comin and Gerlter (2006)
- Hanushek and Quigley (1980)
- Warnock and Warnock (2008)
- Data median, PWT 9.1
- Annual per-capita TFP growth = 0.8% (data median, PWT 9.1)
- Mortgage debt to GDP = 0.55
- Comin and Gerlter (2006)
Utility function

GHH preference: \[u(C^H_t, L^H_t) = \left(\left(C^H_t - \gamma_t(L^H_t)^{1+\epsilon_L} / (1 + \epsilon_L) \right)^{1-\sigma} - 1 \right) / (1 - \sigma) \]

Housing utility: \[g(h^H_t) = (h^H_t)^{1-\epsilon_h} / (1 - \epsilon_h) \]

Labor supply: \[W_t = \gamma_t(L^H_t)^{\epsilon_L} \]

\[\gamma_t = \gamma^\gamma_{t-1} N^1_{t-1} \]

Time-varying disutility of labor \hspace{1cm} (Queralto 2019; Jaimovich and Rebelo 2009)

BGP with constant hours exists but the short-run effect of growth on labor supply is limited
Baseline simulation, extended set of impulse responses
Aggregate demand channel: baseline vs flexible price economy

Nominal frictions matter
Aggregate demand channel: baseline vs binding ZLB

The amplification role of the binding zero lower bound constraint
Endogenous productivity growth is key for generating the empirically-relevant persistent response of TFP, consumption, and output.
Fisherian debt deflation: details of the housing mrkt dynamics

- The aggregate shock has an asymmetric effect across borrowers and savers
- Credit-contained borrowers reduce their housing demand by more than savers
- GE effects amplify the fall in borrowers housing wealth and exacerbate deleveraging